AN INTRODUCTION TO R FOR SPATIAL ANALYSIS AND MAPPING

Download An Introduction To R For Spatial Analysis And Mapping ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to AN INTRODUCTION TO R FOR SPATIAL ANALYSIS AND MAPPING book pdf for free now.

An Introduction To R For Spatial Analysis And Mapping

Author : Chris Brunsdon
ISBN : 9781473911192
Genre : Social Science
File Size : 60.71 MB
Format : PDF, ePub, Mobi
Download : 620
Read : 725

"In an age of big data, data journalism and with a wealth of quantitative information around us, it is not enough for students to be taught only 100 year old statistical methods using 'out of the box' software. They need to have 21st-century analytical skills too. This is an excellent and student-friendly text from two of the world leaders in the teaching and development of spatial analysis. It shows clearly why the open source software R is not just an alternative to commercial GIS, it may actually be the better choice for mapping, analysis and for replicable research. Providing practical tips as well as fully working code, this is a practical 'how to' guide ideal for undergraduates as well as those using R for the first time. It will be required reading on my own courses." - Richard Harris, Professor of Quantitative Social Science, University of Bristol R is a powerful open source computing tool that supports geographical analysis and mapping for the many geography and ‘non-geography’ students and researchers interested in spatial analysis and mapping. This book provides an introduction to the use of R for spatial statistical analysis, geocomputation and the analysis of geographical information for researchers collecting and using data with location attached, largely through increased GPS functionality. Brunsdon and Comber take readers from ‘zero to hero’ in spatial analysis and mapping through functions they have developed and compiled into R packages. This enables practical R applications in GIS, spatial analyses, spatial statistics, mapping, and web-scraping. Each chapter includes: Example data and commands for exploring it Scripts and coding to exemplify specific functionality Advice for developing greater understanding - through functions such as locator(), View(), and alternative coding to achieve the same ends Self-contained exercises for students to work through Embedded code within the descriptive text. This is a definitive 'how to' that takes students - of any discipline - from coding to actual applications and uses of R.
Category: Social Science

An Introduction To R For Spatial Analysis And Mapping

Author : Chris Brunsdon
ISBN : 9781473911208
Genre : Social Science
File Size : 81.68 MB
Format : PDF, Mobi
Download : 746
Read : 595

"In an age of big data, data journalism and with a wealth of quantitative information around us, it is not enough for students to be taught only 100 year old statistical methods using 'out of the box' software. They need to have 21st-century analytical skills too. This is an excellent and student-friendly text from two of the world leaders in the teaching and development of spatial analysis. It shows clearly why the open source software R is not just an alternative to commercial GIS, it may actually be the better choice for mapping, analysis and for replicable research. Providing practical tips as well as fully working code, this is a practical 'how to' guide ideal for undergraduates as well as those using R for the first time. It will be required reading on my own courses." - Richard Harris, Professor of Quantitative Social Science, University of Bristol R is a powerful open source computing tool that supports geographical analysis and mapping for the many geography and ‘non-geography’ students and researchers interested in spatial analysis and mapping. This book provides an introduction to the use of R for spatial statistical analysis, geocomputation and the analysis of geographical information for researchers collecting and using data with location attached, largely through increased GPS functionality. Brunsdon and Comber take readers from ‘zero to hero’ in spatial analysis and mapping through functions they have developed and compiled into R packages. This enables practical R applications in GIS, spatial analyses, spatial statistics, mapping, and web-scraping. Each chapter includes: Example data and commands for exploring it Scripts and coding to exemplify specific functionality Advice for developing greater understanding - through functions such as locator(), View(), and alternative coding to achieve the same ends Self-contained exercises for students to work through Embedded code within the descriptive text. This is a definitive 'how to' that takes students - of any discipline - from coding to actual applications and uses of R.
Category: Social Science

An Introduction To R For Spatial Analysis And Mapping

Author : Chris Brunsdon
ISBN : 144627294X
Genre : Social Science
File Size : 23.50 MB
Format : PDF, Kindle
Download : 260
Read : 212

"In an age of big data, data journalism and with a wealth of quantitative information around us, it is not enough for students to be taught only 100 year old statistical methods using 'out of the box' software. They need to have 21st-century analytical skills too. This is an excellent and student-friendly text from two of the world leaders in the teaching and development of spatial analysis. It shows clearly why the open source software R is not just an alternative to commercial GIS, it may actually be the better choice for mapping, analysis and for replicable research. Providing practical tips as well as fully working code, this is a practical 'how to' guide ideal for undergraduates as well as those using R for the first time. It will be required reading on my own courses." - Richard Harris, Professor of Quantitative Social Science, University of Bristol R is a powerful open source computing tool that supports geographical analysis and mapping for the many geography and ‘non-geography’ students and researchers interested in spatial analysis and mapping. This book provides an introduction to the use of R for spatial statistical analysis, geocomputation and the analysis of geographical information for researchers collecting and using data with location attached, largely through increased GPS functionality. Brunsdon and Comber take readers from ‘zero to hero’ in spatial analysis and mapping through functions they have developed and compiled into R packages. This enables practical R applications in GIS, spatial analyses, spatial statistics, mapping, and web-scraping. Each chapter includes: Example data and commands for exploring it Scripts and coding to exemplify specific functionality Advice for developing greater understanding - through functions such as locator(), View(), and alternative coding to achieve the same ends Self-contained exercises for students to work through Embedded code within the descriptive text. This is a definitive 'how to' that takes students - of any discipline - from coding to actual applications and uses of R.
Category: Social Science

Applied Spatial Data Analysis With R

Author : Roger S. Bivand
ISBN : 9781461476184
Genre : Medical
File Size : 87.44 MB
Format : PDF, ePub, Docs
Download : 492
Read : 334

Applied Spatial Data Analysis with R, second edition, is divided into two basic parts, the first presenting R packages, functions, classes and methods for handling spatial data. This part is of interest to users who need to access and visualise spatial data. Data import and export for many file formats for spatial data are covered in detail, as is the interface between R and the open source GRASS GIS and the handling of spatio-temporal data. The second part showcases more specialised kinds of spatial data analysis, including spatial point pattern analysis, interpolation and geostatistics, areal data analysis and disease mapping. The coverage of methods of spatial data analysis ranges from standard techniques to new developments, and the examples used are largely taken from the spatial statistics literature. All the examples can be run using R contributed packages available from the CRAN website, with code and additional data sets from the book's own website. Compared to the first edition, the second edition covers the more systematic approach towards handling spatial data in R, as well as a number of important and widely used CRAN packages that have appeared since the first edition. This book will be of interest to researchers who intend to use R to handle, visualise, and analyse spatial data. It will also be of interest to spatial data analysts who do not use R, but who are interested in practical aspects of implementing software for spatial data analysis. It is a suitable companion book for introductory spatial statistics courses and for applied methods courses in a wide range of subjects using spatial data, including human and physical geography, geographical information science and geoinformatics, the environmental sciences, ecology, public health and disease control, economics, public administration and political science. The book has a website where complete code examples, data sets, and other support material may be found: http://www.asdar-book.org. The authors have taken part in writing and maintaining software for spatial data handling and analysis with R in concert since 2003.
Category: Medical

Spatial Data Analysis

Author : Robert P. Haining
ISBN : 0521774373
Genre : Nature
File Size : 25.36 MB
Format : PDF, ePub
Download : 645
Read : 255

This book, first published in 2003, is a comprehensive overview of the theory and practice of spatial data analysis for students and researchers.
Category: Nature

Spatial Data Analysis In Ecology And Agriculture Using R

Author : Richard E. Plant
ISBN : 9781439819135
Genre : Mathematics
File Size : 56.47 MB
Format : PDF, Docs
Download : 227
Read : 870

Assuming no prior knowledge of R, Spatial Data Analysis in Ecology and Agriculture Using R provides practical instruction on the use of the R programming language to analyze spatial data arising from research in ecology and agriculture. Written in terms of four data sets easily accessible online, this book guides the reader through the analysis of each data set, including setting research objectives, designing the sampling plan, data quality control, exploratory and confirmatory data analysis, and drawing scientific conclusions. Based on the author’s spatial data analysis course at the University of California, Davis, the book is intended for classroom use or self-study by graduate students and researchers in ecology, geography, and agricultural science with an interest in the analysis of spatial data.
Category: Mathematics

Learning R For Geospatial Analysis

Author : Michael Dorman
ISBN : 9781783984374
Genre : Computers
File Size : 68.42 MB
Format : PDF, Kindle
Download : 738
Read : 1048

This book is intended for anyone who wants to learn how to efficiently analyze geospatial data with R, including GIS analysts, researchers, educators, and students who work with spatial data and who are interested in expanding their capabilities through programming. The book assumes familiarity with the basic geographic information concepts (such as spatial coordinates), but no prior experience with R and/or programming is required. By focusing on R exclusively, you will not need to depend on any external software—a working installation of R is all that is necessary to begin.
Category: Computers

Applied Spatial Statistics For Public Health Data

Author : Lance A. Waller
ISBN : 0471662674
Genre : Mathematics
File Size : 44.99 MB
Format : PDF, Docs
Download : 149
Read : 1258

An application-based introduction to the statistical analysis of spatially referenced health data Sparked by the growing interest in statistical methods for the analysis of spatially referenced data in the field of public health, Applied Spatial Statistics for Public Health Data fills the need for an introductory, application-oriented text on this timely subject. Written for practicing public health researchers as well as graduate students in related fields, the text provides a thorough introduction to basic concepts and methods in applied spatial statistics as well as a detailed treatment of some of the more recent methods in spatial statistics useful for public health studies that have not been previously covered elsewhere. Assuming minimal knowledge of spatial statistics, the authors provide important statistical approaches for assessing such questions as: Are newly occurring cases of a disease "clustered" in space? Do the cases cluster around suspected sources of increased risk, such as toxic waste sites or other environmental hazards? How do we take monitored pollution concentrations measured at specific locations and interpolate them to locations where no measurements were taken? How do we quantify associations between local disease rates and local exposures? After reviewing traditional statistical methods used in public health research, the text provides an overview of the basic features of spatial data, illustrates various geographic mapping and visualization tools, and describes the sources of publicly available spatial data that might be useful in public health applications.
Category: Mathematics

Spatial Statistics And Geostatistics

Author : Yongwan Chun
ISBN : 9781446291627
Genre : Reference
File Size : 32.42 MB
Format : PDF, Docs
Download : 582
Read : 998

"Ideal for anyone who wishes to gain a practical understanding of spatial statistics and geostatistics. Difficult concepts are well explained and supported by excellent examples in R code, allowing readers to see how each of the methods is implemented in practice" - Professor Tao Cheng, University College London Focusing specifically on spatial statistics and including components for ArcGIS, R, SAS and WinBUGS, this book illustrates the use of basic spatial statistics and geostatistics, as well as the spatial filtering techniques used in all relevant programs and software. It explains and demonstrates techniques in: spatial sampling spatial autocorrelation local statistics spatial interpolation in two-dimensions advanced topics including Bayesian methods, Monte Carlo simulation, error and uncertainty. It is a systematic overview of the fundamental spatial statistical methods used by applied researchers in geography, environmental science, health and epidemiology, population and demography, and planning. A companion website includes digital R code for implementing the analyses in specific chapters and relevant data sets to run the R codes.
Category: Reference

Geocomputation

Author : Chris Brunsdon
ISBN : 9781473906303
Genre : Social Science
File Size : 54.31 MB
Format : PDF, Kindle
Download : 355
Read : 472

Geocomputation is the use of software and computing power to solve complex spatial problems. It is gaining increasing importance in the era of the ‘big data’ revolution, of ‘smart cities’, of crowdsourced data, and of associated applications for viewing and managing data geographically - like Google Maps. This student focused book: Provides a selection of practical examples of geocomputational techniques and ‘hot topics’ written by world leading practitioners. Integrates supporting materials in each chapter, such as code and data, enabling readers to work through the examples themselves. Chapters provide highly applied and practical discussions of: Visualisation and exploratory spatial data analysis Space time modelling Spatial algorithms Spatial regression and statistics Enabling interactions through the use of neogeography All chapters are uniform in design and each includes an introduction, case studies, conclusions - drawing together the generalities of the introduction and specific findings from the case study application – and guidance for further reading. This accessible text has been specifically designed for those readers who are new to Geocomputation as an area of research, showing how complex real-world problems can be solved through the integration of technology, data, and geocomputational methods. This is the applied primer for Geocomputation in the social sciences.
Category: Social Science